Protoliths of the 3.8–3.7 Ga Isua greenstone belt, West Greenland
نویسنده
چکیده
The Isua greenstone belt (Fig. 1) contains the oldest known, relatively well preserved, metavolcanic and metasedimentary rocks on Earth. The rocks are all deformed and many were substantially altered by metasomatism, but both the deformation and metasomatism were heterogeneous. Transitional stages can be seen from relatively well preserved primary volcanic and sedimentary structures to schists in which all primary features have been obliterated. Likewise different kinds, and different episodes, of metasomatic alteration can be seen that produced a diversity of different compositions and metamorphic mineral assemblages from similar protoliths. New geological mapping has traced out gradations between the best preserved protoliths and their diverse deformed and metasomatised equivalents. By this means, the primary nature of the schists that make up most of the Isua greenstone belt was reinterpreted, and a new map that better portrays the primary nature of the rocks has been produced. The previously mapped stratigraphy was found to be of little value in understanding the geology. Stratigraphic units were defined by different and diverse criteria, such as current composition, structure, metamorphic texture, and inferred protoliths. Much of this stratigraphy represents a misinterpretation of the primary nature of the rocks. The new work indicates that most of the Isua greenstone belt consists of fault-bounded rock packages, mainly derived from basaltic and high-Mg basaltic pillow lava and pillow lava breccia, chert–BIF, and a minor component of clastic sedimentary rocks derived from chert and basaltic volcanic rocks. A previously mapped, extensive, unit of felsic volcanic rocks was found to be derived from metasomatised basaltic pillow lava and pillow breccia intruded by numerous sheets of tonalite. © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Setting and origin for problematic rocks from the \3.7 Ga Isua Greenstone Belt, southern west Greenland: Earth’s oldest coarse clastic sediments
Whether or not coarse detrital sedimentary rocks occur within the \3.7 Ga Isua Greenstone Belt (IGB), southern west Greenland, has been debated for some time. Repeated, regional metamorphic, deformational, and metasomatic events have obscured most protolith lithologies leading to misunderstandings about the stratigraphy and environments of deposition. Rocks here interpreted as meta-conglomerate...
متن کاملVestiges of life in the oldest Greenland rocks? A review of early Archean geology in the Godthabsfjord region, and reappraisal of field evidence for > 3850 Ma life on Akilia.
The Godthåbsfjord region of West Greenland contains the most extensive, best exposed and most intensely studied early Archean rocks on Earth. A geological record has been described of numerous magmatic events between ~3.9 and 3.6 Ga, and evidence of life at >3.85 Ga and ~3.8-3.7 Ga has been proposed from two widely-separated localities. Some of these claims have recently been questioned, and th...
متن کاملComment on "A Vestige of Earth's Oldest Ophiolite"
Furnes et al. (1) reported that a sheeted-dike complex they identified within the ~3.8billion-year-old Isua supracrustal belt (ISB) in Greenland provides the oldest evidence of oceanic crustal accretion by spreading. However, they did not alert readers that the ISB contains supracrustal rocks and mafic dikes of different ages (2, 3). They also failed to demonstrate that the proposed components ...
متن کاملMass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland
Redox chemistry of the coupled atmosphere–hydrosphere system has coevolved with the biosphere, from global anoxia in the Archean to an oxygenated Proterozoic surface environment. However, to trace these changes to the very beginning of the rock record presents special challenges. All known Eoarchean ( c . 3850–3600 Ma) volcanosedimentary successions (i.e. supracrustal rocks) are restricted to h...
متن کاملOxidative elemental cycling under the low O2 Eoarchean atmosphere
The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth's earliest surface chemistry and the low oxygen primordial biosphere. Here we find...
متن کامل